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Introduction: 

Breast Cancer is an increasingly common malignancy representing 30 % of all cancers in women. 
Although conventional systemic chemotherapy or high dose chemotherapy or high dose chemotherapy 
with autologous stem cell rescue can induce remissions in a significant number of patients, complete 
curative responses are uncommon and nearly all patients die of progressive disease within 3 years.1"6 

Tumor recurrence and progression are thought to be due to the persistence of clones resistant to 
chemotherapy. Therefore, strategies that target these chemotherapy resistant tumor cells are required to 
have a significant impact on the treatment of breast cancer. Recent studies suggest that immunologic 
approaches may have meaningful clinical impact targeting chemotherapy resistant tumor cells7. In this 
regard, development of strategies to maximize antitumor immunity require augmenting immune 
mechanisms that specifically recognize tumor associated antigens.8'9'10 Recent studies suggest that the 
Her-2/neu oncogene can act as a tumor associated antigen in breast cancer.11'12 The development of 
vaccine strategies for breast cancer have focused around the findings that there appears to be active 
immunity to the Her-2/neu protein.13' 14 Unfortunately, the immune response is weak and in effective 
largely due to the fact that Her-2-neu is a "self protein with central tolerance to the immunodominant 
epitopes leaving only cryptic epitopes to be functionally recognized.15 The principal focus of the current 
research project is to augment the immunogenicity of the cryptic epitopes from Her-2/neu inducing 
significant antitumor immunity. The central strategy of the proposed work is to strategically modify the 
cryptic epitope peptides from Her-2/neu with an amino acid sequence from the N-terminal flanking 
region of the invariant chain peptide termed CLIP. Previous studies have demonstrated that the N- 
terminal flanking region of CLIP has superagonistic properties interacting with the Vß segment of the T 
cell receptor increasing the affinity of the MHC class II-peptide-T cell receptor complex.16"17 Increasing 
the affinity of this complex leads to activation of the T lymphocytes capable of recognizing the specific 
peptide sequence. Thus, the current research proposal seeks to determine whether the immunogenicity of 
the Her-2/neu peptides can be augmented by the addition of the N-terminal flanking region of CLIP, to 
characterize the immune response that is induced by immunization with the Her-2/neu chimeric peptide 
constructs and to determine whether immunization with these peptides elicits a heightened immune 
response leading to the induction of protective antitumor immunity. 

Body: 
Initial studies evaluated whether the -KPVSP(M)- sequence from the N-terminal flanking region 

of CLIP could augment the immunogenicity of the pi 171-1185 peptide (sequence - 
MTLERPKTLSPGKNGV-) from Her-2/neu in a rat breast cancer model (CRL 1662) that expresses c- 
neu. Tumor cells were loaded with the parent peptide or the chimeric construct. As a control, the tumor 
cells were loaded with the N-terminal truncated variant of CLIP. The loaded tumor cells were irradiated 
(5000 R) and injected subcutaneously at 4 sites (2.5 X 105 per site) on the back of the animals. The 
animals were re-vaccinated 14 days later. Two weeks following the second vaccination, the animals were 
either evaluated immunologically or challenged with viable tumor cells administered intraperitoneally. 
Vaccination of animals with (data summarized in appended manuscript) tumor cells loaded with the 
chimeric peptide elicited a potent cytolytic T cell response capable of killing unmodified tumor cells. In 
comparison, vaccination of animals with tumor cells loaded with either the parent Her-2/neu or the N- 
terminal truncated variant of CLIP did not result in the induction of any significant cytolytic T cell 
activity. The specificity of the cytolytic response (in order to determine whether the chimeric peptide was 
recognized by the cytolytic T cells) was further explored evaluating the ability of the cells from the 
animals immunized with the chimeric Her-2/neu peptide to kill peptide loaded tumor cells. Loading the 
tumor cells with the chimeric peptide or the other MHC class II binding peptides (unmodified parent Her- 
2/neu peptide, the N-terminal truncated CLIP variant) had little, if any, significant effect on the 
susceptibility of the target cells to killing mediated by the primed effector cells. The frequency of 
responding cells (largely CD4+ T cells established by flow cytometric analysis of T cell clones; data not 
presented) was also assessed in limiting dilution.    The frequency of responding T cells in animals 



vaccinated with the chimeric construct was significantly increased compared to animals vaccinated with 
the parent peptide (appended manuscript). The lymphocytes from the chimeric construct primed animals 
also responded to the parent peptide. In contrast, the response of the lymphocytes from animals 
vaccinated with the parent peptide was minimal. 

Vaccination of the animals with the tumor cells loaded with the chimeric Her-2/neu peptide 
resulted in the induction of protective antitumor immunity. As shown in Figure 1, animals vaccinated 
with the chimeric Her-2/neu tumor cell preparation were resistant to live tumor cell challenge. 
Vaccination with the chimeric peptide resulted in 50% of the animals being resistant to challenge with 3 
X 10 live tumor cells. Comparatively, animals immunized with the tumor cells loaded with the parent 
peptide or the N-terminal truncated variant of CLIP all succumbed to tumor growth by day 15. At a lower 
tumor cell challenge dose (3 X 105), 75% of the animals vaccinated with the chimeric Her-2/neu tumor 
cell preparation survived. There was, at best, only a marginal effect when the animals were immunized 
with the tumor cells loaded with the parent peptide or the N-terminal truncated variant of CLIP. 
Nevertheless, these animals succumbed to tumor challenge by day 32. 

The efficacy of the chimeric Her-2/neu peptide construct was also evaluated utilizing peptide 
loaded dendritic cells. These studies, however, would only be effective if an MHC class I peptide could 
be identified that elicited an MHC class I restricted cytolytic T cell response and was expressed on the 
tumor cells. Recent studies have identified the binding motif for MHC class I molecules in F344 rats.18 

Based on computer modeling, 6 potential MHC class I binding peptide candidates were identified. One 
peptide (p554-562) was found to be immunogenic. As demonstrated in Figure 2A, immunization of 
animals with dendritic cells (5 x 104 cells per site, 4 sites) loaded with this MHC class I binding peptide 
elicited a cytolytic T cell response. Spleen cells from these animals were capable of killing peptide 
loaded PHA blast cells but demonstrated no specific killing of unloaded PHA blast cells. More 
importantly, as shown in Figure 2B, spleen cells from the immunized animals were able to kill 
unmodified tumor cells clearly indicating that this peptide is presented by this tumor cell line. These 
findings were confirmed in three additional animals immunized with the peptide loaded dendritic cells. 

Based on these findings, dendritic cells were loaded with combinations of the MHC class I 
binding peptide and the parent or the chimeric MHC class II binding peptides. Additionally, the dendritic 
cells were also loaded with the truncated variant of CLIP containing the N-terminal flanking region. 
Animals were vaccinated with the peptide loaded dendritic cells (5 X 104) cells/site at 4 sites X 2; 14 days 
apart). Subsequent to the last immunization (14 days) the animals were evaluated for cytolytic T cell 
function and for the induction of protective antitumor immunity. As shown in Figure 3, a potent cytolytic 
T cell response could only be demonstrated in animals immunized with the dendritic cells loaded with the 
MHC class I Her-2/neu peptide and the chimeric Her-2/neu construct. These cytolytic T cells belonged to 
the CD 8+ T cell subset as confirmed in depletion experiments (Percent killing at a 30:1 effector to target 
ratio: Mean +/- S.E.M., n=3, Control, 52.3 +/- 4.9, CD 4 depleted, 48.3 +/- 3.7, CD 8 depleted, 2.6 +/- 
2.8). Weak or modest cytolytic T cell responses could be demonstrated for the animals vaccinated with 
the dendritic cells loaded with the MHC class I Her-2/neu peptide plus the parent MHC class II Her/2/neu 
peptide or with dendritic cells loaded with only the MHC class I peptide from Her-2/neu. In accord with 
these results are the findings that the animals vaccinated with the peptide from Her-2/neu plus the 
chimeric construct presented on dendritic cells were resistant to live tumor challenge (Figure 4). 
Comparatively, all other groups vaccinated with dendritic cells variably loaded with the different peptide 
combinations succumbed to tumor challenge. 

Studies were also undertaken to evaluate whether protective antitumor immunity required both 
CD4+ and CD8+ T cells. Spleen cells from the vaccinated animals and resistant to tumor challenge were 
harvested and fractionated into the CD4+ and CD8+ T cell subsets prior to adoptive transfer into naive 
F344 rats. The rats were challenged with 3 X 105 live tumor cells. As shown in Figure 5, animals 
receiving unfractionated spleen cells or the combination of CD4+ plus CD8+ T lymphocyte subsets were 



resistant to tumor challenge.    Animals receiving just the isolated CD4+ or CD8+ T cell subsets 
succumbed to tumor challenge. 

Taken together, studies conducted during the current year of funding demonstrate that the 
immunogenicity of a cryptic peptide from the oncogene Her-2/neu could be augmented by the addition of 
the N-terminal flanking region of CLIP. Immunizing animals with the chimeric peptide either presented 
on tumor cells or on dendritic cells loaded with an immunogenic MHC class I binding peptide from Her- 
2/neu elicited protective antitumor immunity in a rat model of breast cancer. These data are in accord 
with the initial hypothesis of this proposal. Subsequent studies plan to further elucidate the cellular 
immunological basis for the protective antitumor immune response specifically evaluating the V region 
repertoire, cytokine profile and specificity of the effector T cells as outlined in the original proposal. 
Additionally, we plan to utilize these strategies to determine whether significant antitumor immunity can 
be induced in animals with actively growing tumor. 

Key Research Accomplishments: 

demonstrated that the immunogenicity of a cryptic Her-2/neu peptide can be augmented by 
the addition of the N-terminal flanking region of CLIP 
demonstratred that immunization of animals with the chimeric Her-2/neu peptides can 
elicit a potent cytolytic T cell response 
demonstrated that the chimeric Her-2/neu peptide is effective when presented on tumor 
cells or in the context of dendritic cells along with an MHC class I immunogenic peptide 
from Her-2/neu 
demonstrated that effective antitumor immunity in this setting requires both CD4+ and 
CD8+ T lymphocytes 
demonstrated that vaccination with the chimeric Her-2/neu peptide elicits protective 
antitumor immunity 

Report able Outcomes: 

Studies conducted during the first year of funding have been submitted for publication to Cancer 
Research and the manuscript entitled "The N-Terminal Flanking Region of the Invariant Chain Peptide 
Augments the Immunogenicity of a Cryptic Epitope from the Her-2/neu Tumor Associated Antigen" is 
appended. 

Conclusions: 

The present project is based on the hypothesis that the N-terminal flanking region of the invariant 
chain peptide termed CLIP has superagonistic properties interacting the T cell receptor and the MHC 
class II molecule at the binding site for the bacterial superantigen, staphylococcal enterotoxin B. The 
current studies tested the hypothesis that this N-terminal segment of CLIP can augment the 
immunogenicity of cryptic "self tumor associated antigens from Her-2/neu. The results indicate that the 
immunogenicity of a cryptic peptide from Her-2/neu can be augmented by adding the N-terminal flanking 
region of CLIP. The chimeric peptides elicit potent antitumor cytolytic T cell activity against a Her- 
2/neu+ tumor rat model leading to the induction of systemic protected antitumor immunity. The chimeric 
peptide was effective at inducing an antitumor immune response when presented either on tumor cells or 
on dendritic cells in concert with an immunogenic MHC class I peptide from Her-2/neu. These results 
clearly suggest that modification of peptides from tumor associated antigens by creating chimeric 
constructs containing N-terminal flanking region of CLIP is an effective strategy to augment the 
immunogenicity of these peptide antigens.  Most importantly, however, will be the studies conducted in 



the next year of funding to determine whether these strategies can effectively augment antitumor 
immunity in host with actively growing tumors. 
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Figure 1 Vaccination with chimeric Her-2/neu peptide loaded tumor cells induced protective 

antitumor immunity 

F344 rats were vaccinated (2X, 14 days apart) with peptide loaded, irradiated (5000R) CRL 1666 tumor 
cells Included in the panel of peptides were the parent pll71-1185 pept.de, the chunenc construct and 
SüiS^ränt of CLP containing the N-terminal flanking region. Fourteen days following the 
second vaccination, the animals were challenged with live tumor cells administered mtrapentoneally. 
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Figure 2A, B  Induction of a cytolytic T cell response to a Her-2/neu MHC class I restricted peptide 

F344 rats were immunized intradermally (2X, 14 days apart) with dendritic cells (5 x 104 cells/site 4 
Set) baded with the MHC class I binding peptide (p544-562) from Hef-2/neu Splemc T lymphocytes 
were Ä days later and evaluated for their ability to kill peptide loaded PHA blast cells (A) or 

unmodified CRL 1666 tumor cells (B). 
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Figure 3    In Vitro targeting of unmodified tumor cells after vaccination with Her-2/neu peptide 
loaded dendritic cells 

F344 rats were vaccinated intradermally twice, 14 days apart with peptide loaded dendritic cells (5x10 
cells/site 4 sites)  Peptides included the p 1171-1185 parent, the chimeric construct, the N-terminal CLIP 
variant and the MHC class I binding peptide (p544-562) from Her-2/neu. Peptides were loaded singly or 
in various combinations.   Subsequent (14 days) to the last vaccination, splenic T lymphocytes were 
harvested and evaluated for their ability to kill unmodified CRL 1666 tumor cells. 
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Figure 4    Vaccination with Her-2/neu peptide loaded dentritic cells induces protective antitumor 

immunity 

F344 rats were vaccination intradermally (2X, 14 days apart) with dendritic cells (5 x 104 cells/site, 4 
sites) that were loaded singly or in various combinations with the MHC class I (p5 54-562) and class II (p 
1175-1185) Her-2/neu peptides, the chimeric construct or the N-terminal CLIP variant. Fourteen days 
later, the animals were challenged with live tumor (3 x 105 CRL 1666 cells) administered 
intraperitoneally. 
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Figure 5  Effective antitumor immunity requires both CD4+ and CD8+ T cells 

Animals were vaccinated (2X) intradermally with dendritic cells (5 x 10 4 cells/site, 4 sites) loaded with 
the MHC class I (p554-562) and the chimeric (pll71-1185) construct. Fourteen days after the last 
vaccination the splenic T lymphocytes were harvested and the CD8+ and CD4+ subsets isolated by 
immunomagnetic bead separation. The cells were adoptively transferred into secondary F344 recipients 
(unfractionated, isolated CD4+ and CD8+ subsets: 30 x 106 cells per recipient: recombined subsets 15 x 
106 of each per recipient). Following (1 day) the adoptive transfer, the animals were challenged with 3 x 
105 viable CRL 1666 tumor cells. 
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Abstract 

TheN-terminal flanking region of the invariant chain peptide termed CLIP, has superagonistic 

properties interacting with the T cell receptor and the MHC class II molecule at the binding site for the 

bacterial superantigen, Staphylococcal enterotoxinB (SEB). The present studies explored the hypothesis 

that the N-terminal segment of CLIP can augment the immunogenicity of cryptic "self' tumor-associated 

antigens. A chimeric construct of a peptide from the oncogene, Her-2/neu containing the N-terminal 

flanking region of CLIP elicited potent antitumor activity against aHer-2/neu positive tumor in a rat model 

system. Comparatively, the unmodified parent peptide was ineffective. The induction of effective antitumor 

immunity, however, required presentation of the chimeric peptide construct on irradiated tumor cells or the 

peptide construct in concert with an MHC class I peptide from Her-2/neu. 

16 



Introduction 

During the past several years, evidence has accumulated indicating that tumor cells express antigens 

that can be recognized by the immune system.1_3 These tumor-associated (T A) antigens include normal 

"self' proteins that are over expressed due to gene amplification,3'4 however, the immune response to these 

antigens is weak and ineffective.5'6 The host is tolerant to the immunodominant epitopes of these antigens 

leaving only cryptic epitopes to be functionally recognized.7 The weak immune responses to the cryptic 

epitopes of tumor antigens appears to be related to the low affinity of the peptide antigens for their 

presenting MHC molecule resulting in poor presentation of the MHC-peptide ligands to T cells.8 

Augmenting the immunogenicity of these TA antigens is a critical step in enhancing vaccine strategies 

designed to elicit the induction of antitumor immunity. 

Characterization of the effector T cells in the experimentally induced autoaggression syndrome 

termed autologous/syngeneic graft-vs-host disease (GVHD), reveals a unique mode of antigen recognition 

that augments recognition of nominal antigenic peptides.9 This autoaggression syndrome can be induced 

in man and in rodents by administering Cyclosporine after autologous or syngeneic bone marrow 

transplantation and is associated with the development of a highly restricted repertoire of autoreactive T 

cells that promiscuously recognize MHC class II determinants.10"12 MHC class II recognition occurs even 

in the absence of the classical CD 4 cell surface restriction element. Recent studies reveal that pathogenic 

syngeneic GVHD effector T cells recognize a peptide from the MHC class II invariant chain, termed 

CLIP, presented in the context of MHC class II antigens.10-14 Most importantly, there appears to be a 

17 



functional interaction between the Vß component of the T cell receptor (TcR) and the N-terminal flanking 

region of CLIP that extends beyond the peptide binding domain of MHC class II. This superagonistic 

interaction which occurs at or near the binding site for the staphylococcal enterotoxin B (SEB) 

superantigen, appears to increase the affinity of the TcR: MHC class II: peptide complex.10'14 

The present studies explore the hypothesis that the N-terminal flanking region of CLIP can augment 

the immunogenicity of cryptic "self' TA antigens. The results reveal that vaccination of animals with a 

chimeric construct of a cryptic epitope from the Her-2/neu oncogene and the N-terminal flanking region 

of CLIP elicited a potent cytolytic T cell response and the induction of protective antitumor immunity. The 

induction of effective antitumor immunity, however, requires either presentation of the chimeric peptide 

construct on irradiated tumor cells or the peptide construct in concert with an MHC class I binding peptide 

from Her-2/neu presented on dendritic cells. 

Materials and Methods 

Animals 

Fischer (F3 44) strain rats, 4-6 weeks of age were purchased from Charles River, Inc. (Wilmington, 

MA). The animals were kept in sterile microisolator cages and fed food and water ad libitum. The 

animals were challenged with tumor intraperitoneally. For the adoptive transfer studies, the rats were 

pretreated with cyclophosphamide (100 mg/kg) 1 day prior to receiving immune spleen cells and tumor 

challenge. Four to six animals were used for each experimental group. 
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Tumor Cells 

The breast cancer cell line, CRL 1666, derived from F344 strain rats was purchased from the 

American Type Culture Collection (ATCC). The tumor cells express MHC class I and II antigens and 

express c-neu as detected by mouse anti-rat c-neu monoclonal antibody (Ab-4; Oncogene Research 

Products, Calbiochem, Cambridge, MA). The cell line was maintained in vitro in McCoy's 5 A tissue 

culture medium (Grand Island biological Co. Gibco, Grand Island, NY) supplemented with 10% fetal calf 

serum. The cells were washed three times in tissue culture prior to use in in vitro assays or in vivo 

intraperitoneal challenge. 

Effector Cell Isolation 

Spleens from control and experimental animals were harvested and passed through a wire mesh 

screen to obtain a single cell suspension. The mononuclear cell fraction was isolated by Ficoll-Hypaque 

density centrifugation and further fractionated by nylon wool columns to enrich for T lymphocytes as 

previously described.12"15 The CD8+ and CD4+ T lymphocyte subsets were isolated by immunomagnetic 

bead separation using the anti-rat CD4 and CD8 murine monoclonal antibodies (Serotec, Bioproducts for 

Science, Indianapolis, IN) as described previously.15 The purity of the population was confirmed flow 

cytometrically by staining the cells with monoclonal antibodies to rat CD4 and CD8 cell surface 

determinants and counter staining with rat adsorbed, fluorescein isothiocyanate (FITC) conjugated sheep 

anti-mouse IgG (Sigma Chemical Co., St. Louis, Mo.). Cells stained with normal mouse serum and 
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counterstained with the FITC anti-mouse IgG served as the control. 

Dendritic cells were isolated from spleen cells based on differential plastic adherence as previously 

described.16 Briefly rat spleen cells were incubated for 2 hours in tissue culture flasks. The flasks were 

rinsed thoroughly with tissue culture medium. After 18 hours of incubation, the dendritic cells that detached 

from the plastic tissue culture flasks were harvested and washed in tissue culture medium. The cells were 

confirmed to be dendritic cells by their potent stimulatory activity of allogeneic lymphocytes in mixed 

lymphocyte reactions and by expression of 0X62 (Pharmigen, San Diego, CA) the rat dendritic cell 

marker, assessed flow cytometrically. 

Immunological Assessment 

Killing was assessed using a 3H-thymidine-based assay (JAM) as described by Matzinger, that 

measures DNA fragmentation and cell death.17 The target cells (PHAblast cells, tumor cells; 5-10 x 106) 

were pulsed with 2.5 JJ. Ci/ml of 3H-thymidine for 18 hours and washed three times before assay. Graded 

numbers of the effector T cells and the target cells (5x103) were coincubated for 4 hours before harvest. 

The frequency of the responding T cells after vaccination was assessed utilizing a limiting dilution 

technique as previously described.12"15 Briefly, splenic lymphocytes were cultured at limiting dilution utilizing 

irradiated syngeneic spleen cells loaded with parent or chimeric Her-2/neu peptides (MHC class TJ binding) 

as APC s in complete tissue culture medium containing IL-2 (1 OU/ml). Positive wells were visually scored 
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after 14 days of culture and the clones were expanded by restimulation (every 7 to 10 days) with irradiated 

peptide pulsed syngeneic spleen cells (2 x 104 cells/macrotiter well) for Vß TcR gene usage as previously 

described.12'15 

Peptides 

The sequences of the peptides principally utilized in the present studies are given in Table 1 and 

include the truncated variant of CLIP containing the N-terminal flanking region (p 86-100), the 

fluoresceinated derivative of p86-100, (for binding studies), the parent MHC class II bindingHer-2/neu 

peptide (pi 171 -1185) described by Dsis et al18'19 and the chimeric derivative containing the N-terminal 

flanking region of CLIP. 

Recent studies have elucidated the binding motif for Lewis/F3 44 strain rats.20 The peptide ligands 

are nonamers that contain a hydrophobic leucine anchor residue at position 3 and a carboxyl terminal serine 

anchor residue. Computer modeling of the rat Her-2/neu amino acid sequence revealed 5 potential 

candidates that could bind to Lewis/F344 MHC class I molecules. Initial studies revealed one sequence 

(p554-562) that elicited a cytolytic T cell response (described in the results) and is listed in Table 1. The 

other peptides (p377-385, p403-411, p439-447, p790-798 andpl 105-1113) were either weakly or non- 

immunogenic. The peptides, chemically synthesized and purified by high pressure liquid chromatography, 

were obtained from Quality Controlled Biochemicals (Hopkinton, MA). The peptides (>92% purity) were 

diluted to 10 uM in RPMI1640 prior to loading as previously described.10-1 h 13 Previous dose-response 
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studies revealed that maximal saturation was achieved by pretreating the target cells with 1 uM peptide. 

Results 

Initial studies evaluated whether the -KPVSP(M)- sequence from the N-terminal flanking region 

of CLIP could augment the immunogenicity of the pll71-l 185 peptide from Her-2/neu. Tumor cells were 

loaded with the parent peptide or the chimeric construct. As a control, the tumor cells were loaded with 

the N-terminal truncated variant of CLIP. The loaded tumor cell s were irradiated (5000 R) and inj ected 

subcutaneously at 4 sites (2.5 X105 per site) on the back of the animals. The animals were re-vaccinated 

14 days later.   Two weeks following the second vaccination, the animals were either evaluated 

immunologicaUyorchallengedwithviabletumorceUsadministeredintraperitoneally. Arepresentative(l/4) 

experiment is presented in Figure 1. Vaccination of animals with tumor cells loaded with the chimeric 

peptide elicited a potent cytolytic T cell response capable ofkilling unmodified tumor cells. In comparison, 

vaccination of animals with tumor cells loaded with either the parent Her-2/neu or the N-terminal truncated 

variant of CLIP did not result in the induction of any significant cytolytic T cell activity. The specificity of 

the cytolytic response (in order to determine whether the chimeric peptide was recognized by the cytolytic 

T cells) was further explored evaluating the ability of the cells from the animals immunized with the chimeric 

Her-2/neu peptide to kill peptide loaded tumor cells. As shown in Figure 2, loading the tumor cells with 

the chimeric peptide or the other MHC class II binding peptides (unmodified parent Her-2/neu peptide, 

the N-terminal truncated CLIP variant) had little, if any, significant effect on the susceptibility of the target 

cells to killing mediated by the primed effector cells. 
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The frequency of responding cells (largely CD4+ T cells established by flow cytometric analysis 

ofT cell clones; data not presented) was also assessed in limiting dilution. As shown inFigure 3 A, B, the 

frequency of responding T cells in animals vaccinated with the chimeric construct was significantly increased 

compared to animals vaccinated with the parent peptide. The lymphocytes from the chimeric construct 

primed animals also responded to the parent peptide. In contrast, the response of the lymphocytes from 

animals vaccinated with the parent peptide was minimal. 

Vaccination of the animals with the tumor cells loaded with the chimeric Her-2/neu peptide resulted 

in the induction of protective antitumor immunity. As shown in Figure 4, animals vaccinated with the 

chimeric Her-2/neu tumor cell preparation were resistant to live tumor cell challenge. Vaccination withthe 

chimeric peptide resulted in 50% of the animals being resistant to challenge with 3 X106 live tumor cells. 

Comparatively, animals immunized with the tumor cells loaded withthe parent peptide or theN-terminal 

truncated variant of CLIP all succumbed to tumor growth by day 15. At a lower tumor cell challenge dose 

(3 X105), 75% of the animals vaccinated with the chimeric Her-2/neu tumor cell preparation survived. 

There was, at best, only a marginal effect when the animals were immunized with the tumor cells loaded 

with the parent peptide or the N-terminal truncated variant of CLIP. Nevertheless, these animals 

succumbed to tumor challenge by day 32. 

The efficacy of the chimeric Her-2/neu peptide construct was also evaluated utilizing peptide loaded 

dendritic cells. These studies, however, would only be effective if an MHC class I peptide could be 

identified that elicited an MHC class I restricted cytolytic T cell response and was expressed on the tumor 
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cells. Recent studies have identified the binding motif for MHC class I molecules in F344 rats.20 Based 

on computer modeling, 6 potential MHC class I binding peptide candidates were identified. One peptide 

(p554-562) was found tobe immunogenic. As demonstrated inFigure 5 A, immunization of animals with 

dendritic cells (5 x 104 cells per site, 4 sites) loaded with this MHC class I binding peptide elicited a 

cytolytic T cell response. Spleen cells from these animals were capable ofkilling peptide loaded PHA blast 

cells but demonstrated no specific killing of unloaded PHA blast cells. More importantly, as shown in 

Figure 5B, spleen cells from the immunized animals were able to kill unmodified tumor cells clearly 

indicating that this peptide is presented by this tumor cell line. These findings were confirmed in three 

additional animals immunized with the peptide loaded dendritic cells. 

Based on these findings, dendritic cells were loaded with combinations of the MHC class I binding 

peptide and the parent or the chimeric MHC class II binding peptides. Additionally, the dendritic cells were 

also loaded with the truncated variant of CLIP containing the N-terminal flanking region. Animals were 

vaccinated with the peptide loaded dendritic cells (5 X 104) cells/site at 4 sites X 2; 14 days apart). 

Subsequent to the last immunization (14 days) the animals were evaluated for cytolytic T cell function and 

for the induction of protective antitumor immunity. As shown in Figure 6, a potent cytolytic T cell response 

could only be demonstrated in animals immunized with the dendritic cells loaded with the MHC class I Her- 

2/neu peptide and the chimeric Her-2/neu construct. These cytolytic T cells belonged to the CD 8+ T cell 

subset as confirmed in depletion experiments (Percent killing at a 3 0:1 effector to target ratio: Mean +/- 

S.E.M., n=3, Control, 52.3 +/- 4.9, CD 4 depleted, 48.3 +/- 3.7, CD 8 depleted, 2.6 +/-2.8). Weak or 

modest cytolytic T cell responses could be demonstrated for the animals vaccinated with the dendritic cells 
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loaded with the MHC class I Her-2/neu peptide plus the parent MHC class II Her/2/neu peptide or with 

dendritic cell s loaded with only the MHC class I peptide from Her-2/neu. In accord with these results are 

the findings that the animals vaccinated with the peptide from Her-2/neu plus the chimeric construct 

presented on dendritic cells were resistant to live tumor challenge (Figure 7). Comparatively, all other 

groups vaccinated with dendritic cells variably loaded with the different peptide combinations succumbed 

to tumor challenge. 

Studies were undertaken to evaluate whether protective antitumor immunity required both CD4+ 

and CD8+ T cells. Spleen cells from the vaccinated animals and resistant to tumor challenge were 

harvested and fractionated into the CD4+ and CD8+ T cell subsets prior to adoptive transfer into naive 

F344 rats. The rats were challenged with 3 X105 live tumor cells. As shown in Figure 8, animals receiving 

unfractionated spleen cells orthe combination of CD4+ plus CD8+ T lymphocyte subsets were resistant 

to tumor challenge. Animals receiving just the isolated CD4+ or CD8+ T cell subsets succumbed to tumor 

challenge. 

One potential mechanism to account for the heightened immunogenicity of the chimeric peptide 

construct is that it might have an increased affinity for MHC class II molecules compared to the parent, 

unmodified peptide. Studies were undertaken to evaluate whether the chimeric peptide construct had a 

greater affinity than the parent molecule. In orderto approach this question, aflow cytometric assay was 

developed in which PHA blast cells were stained with fluoresceinated CLIP. As shown in Figure 9, both 

the parent and the chimeric Her-2/neu construct equally inhibited the binding of fluorescent CLIP. This 
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ability to inhibit fluorescent CLIP binding was virtually identical to the ability of native CLP to inhibit the 

binding of the fluoresceinated derivative. Previous studies confirmed binding of the fluorsceinated CLIP 

to MHC class II since pretreatment of the PHA blast cells with monoclonal antibody to MHC class II 

determinants inhibited staining whereas anti-MHC class I antibody pretreatment was ineffective.10'12 

Discussion 

Previous studies in our laboratory revealed that the autoaggression syndrome induced by 

administering Cyclosporine after syngeneic or autologous bone marrow transplantation is mediated by a 

highly conserved repertoire of Vß 8.5+ CD 8+ autoreactive T cells that promiscuously recognize MHC 

class II determinants.9,15 Recognition of MHC class II molecules by the autoreactive T cells is dependent 

on the presentation and recognition of CLIP.10,12 This peptide derived from the invariant chain that 

shepherds the biosynthesis ofMHC class II is thought to stabilize MHC class II molecules in the absence 

of nominal peptides.21'22 Essential for the promiscuous recognition of MHC class II, however, is the 

interaction between the N-terminal flanking region of CLIP that extends beyond the MHC peptide binding 

groove and the Vß segment of the TcR at or near the binding site for the superantigen SEB.12,13,23'24 This 

interaction could overcome the requisite specificity of the TcR CDR3 domain for the peptide sequence 

within the peptide binding groove of MHC class II. Presentation of chimeric constructs of irrelevant 

peptides with theN-terminal flanking region allowed for effective targeting by CLIP reactive T cell clones.13 

Of additional importance in this regard are the findings that the N-terminal fragment of CLIP can promote 

promiscuous binding of peptides to MHC class II when presented as chimeric constructs.24 The affinity 
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of the TcR:peptide:MHC Class II complex appears to be increased by this interaction thus not only 

potentially explaining the promiscuous specificity of the autoreactive T cells but also the restriction of the 

repertoire to an SEB responsive subset. Moreover, this interaction appears to override the requirement 

for the classical cell surface accessory molecule (CD4).11'n 

The superagonistic properties of the N-terminal flanking region of CLIP as defined in the 

autologous/syngeneic GVHD model and its ability to promote promiscuous binding of peptides to MHC 

class II suggest that this peptide fragment may be able to augment the immunogenicity of nominal peptides 

including cryptic epitopes from TA antigens. The results from the present studies clearly support this 

hypothesis. The immunogenicity of an MHC class II binding peptide (pi 171-1185) from the rat Her-2/neu 

oncogene was augmented by the addition of the N-terminal flanking region sequence of CLIP. ThisHer- 

2/neu peptide is weakly immunogenic eliciting both antibody and CD 4 T helper responses but required 

repeated immunizations in adjuvant to evoke this response.18'19 Immunization with this parent peptide also 

failed to induce significant protective antitumor immunity. In the present studies, vaccination with a chimeric 

construct of this peptide that contained the N-terminal flanking region of CLIP elicited a potent cytolytic 

T cell response and the induction of protective antitumor immunity. Successful vaccination required 

presentation ofboth the N-terminal flanking region and the Her-2/neu peptide. Interestingly, vaccination 

with the chimeric construct increased the frequency of cells responding to the parent peptide. In accord 

with our results are recent findings demonstrating that the potency ofMHC class II-presented epitopes is 

increased by linking the peptide to the p77-92 peptide of the invariant chain.25 Moreover, studies by 

Naujokas, et al. Suggest that there is an interactive T cell epitope on a flanking region of CLIP that lies 
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outside of the MHC class II peptide binding domain.26 

It is important to note, however, that the induction of a successful antitumor response in vitro and 

in vivo required either presentation of the chimeric peptide on irradiated tumor cells or the peptide 

construct in combination with an MHC class I binding peptide fromHer-2/neu presented on dendritic cells 

whereas other combinations or the use of single peptides were ineffective. These data suggest that 

although the immunogenicity of the p 1171 -1185 chimeric construct was enhanced (as also evidenced by 

the results from the limiting dilution studies), there was a requirement for direct recognition of the tumor cell 

(and presentation of other MHC class I restricted antigens?) or presentation of a Her-2/neu antigen 

restricted by MHC class I and expressed on the tumor cell in combination with the chimeric construct. The 

chimeric construct did not appear to be recognized by the cytolytic T cells. These results were initially 

surprising considering the findings in the autologous/syngeneic GVHD model where theN-terminal flanking 

region of CLIP allowed for CD 8+ cytolytic T cell targeting ofMHC class IT9"14 Perhaps this unique mode 

ofMHC class II antigen recognition is dependent on the administration of Cyclosporine and its affect on 

T cell differentiation in the thymus. A number of studies clearly indicate that this drug remarkably alters 

thymic differentiation and restriction.27"29 It will be of interest to evaluate the chimeric vaccine strategy after 

a course of Cyclosporine treatment. 

For peptide vaccine strategies to be successful, the tumor cells must express the antigen at the cell 

surface. In this regard, recent studies by Zaks and Rosenberg demonstrated that immunization with a 

peptide epitope from Her-2/neu elicited peptide-specific cytolytic T lymphocytes but failed to recognize 
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Her-2/neu positive tumors.30 In the present studies, there was recognition and killing of the unmodified 

tumor cells after immunization with theMHC class I peptide. A potent cytolytic T cell response and the 

induction of protective antitumor immunity, however, required immunization in conjunction with the 

chimeric construct. It is important to note that effective immunization with the MHC class I peptide and 

the chimeric construct presented on dendritic cells elicited a CD 8+ cytolytic T cell response but this 

response by itself was insufficient for protective antitumor immunity. The adoptive transfer studies clearly 

show that protective antitumor immunity required priming of the CD 4+ T cell subset, findings that are in 

accord with several other studies.31_35 It seems likely that immunization with the chimeric construct primed 

the CD 4+ T cell subset. 

The underlying mechanisms accounting for the heightened immunogenicity ofthe chimeric construct 

remains unclear. Competitive inhibition studies did not reveal any significant differences in affinity between 

the parent peptide or the chimeric construct that might account for the potentiation of immunogenicity.24' 

25 The potential interaction between the N-terminal flanking region and the Vß segment ofthe T cell 

receptor may account for the potentiation of nominal peptide immunogenicity.12,13,25 Our previous studies 

suggest that the interaction between the N-terminal flanking region of CLIP and the Vß segment ofthe TcR 

as defined for the autologous/syngeneic GVHD effector T cells occurs at or near the SEB binding site. 

Such an interaction might skew the repertoire. Preliminary analysis of several clones (17) reveal a skewing 

ofthe repertoire to cells expressing Vß8.5,11, and 17 elements that confer responsiveness to SEB ,36'37 

An extensive analysis, however, is required to show definitive skewing ofthe repertoire. Additional studies 

evaluating peptide-TcR-MHC class II interaction at the molecular level also must be undertaken to further 
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delineate the underlying mechanisms. Nevertheless, the results from the present studies indicate that the 

N-terminal flanking region of CLIP can augment the immunogenicity of a cryptic epitope from a "self 

antigen. Studies are underway evaluation other peptides constructs from Her-2/neu and to determine 

whether this approach can be effective in animals with actively growing tumors. 
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Figure 1 Vaccination with chimericHer-2/neu peptide loaded tumor cells induces a cytolyticT 

cell response 

F344rats were vaccinated intradermally (4 sites, twice 14 days apart) with irradiated (5000R) CRL1666 

tumor cells (2.5 x 105) loaded with the pi 171-1185 Her-2/neu peptide, the pi 171-1185 chimeric 

construct, the truncated variant of CLIP containing the N-terminal flanking region or the control diluent. 

Fourteen days following the last vaccination, splenic T cells were harvested and assessed for their ability 

to kill unmodified CRL 1666 tumor cells. 
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Figure 2     Effect of peptide loading on tumor cell killing 

Spleens from animals vaccinated twice with thepll71-1185 chimeric peptide loaded tumor cells were 

harvested 14 days after the second vaccination. The splenic lymphocytes were isolated by Ficoll-Hypaque 

density centrifugation and enriched for T cells by nylon wool fractionation. The effector T cells were 

assessed for their ability to kill tumor cells loaded with the pi 171-1185 peptide from Her-2/neu, the 

pi 171-1185 chimeric construct, the N-terminal truncated variant of CLIP or the control diluent. 
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Figure 3   Vaccination with the chimeric peptide elicits an increased frequency of responding 

lymphocytes 

Animals were vaccinated with peptide loaded, irradiated (5000R) tumor cells (parent pi 171-1185 and the 

chimeric construct). Splenic T cells were harvested and limiting dilution cultures established stimulating with 

antigen presenting cells loaded with either the chimeric construct (A) or the parent Her-2/neu peptide (B). 

Data represented as a modified limiting dilution graph. 
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Figure 4   Vaccination with ch im eric Her-2/neu peptide loaded tumor cells induced protective 

antitumor immunity 

F344 rats were vaccinated (2X, 14 days apart) with peptide loaded, irradiated (5000R) CRL1666 tumor 

cells. Included in the panel of peptides were the parent pi 171-1185 peptide, the chimeric construct and 

the truncated variant of CLIP containing the N-terminal flanking region. Fourteen days following the 

second vaccination, the animals were challenged with live tumor cells administered intraperitoneally. 
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Figure 5A, B    Induction of a cytolytic T cell response to a Her-2/neu MHC class I restricted 

peptide 

F344 rats were immunized intradermally (2X, 14 days apart) with dendritic cells (5 x 104cells/site, 4 sites) 

loaded with the MHC class I binding peptide (p5 54-562) from Her-2/neu. Splenic T lymphocytes were 

harvested 14 days later and evaluated for their ability to kill peptide loaded PHA blast cells (A) or 

unmodified CRL 1666 tumor cells (B). 
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Figure6 In Vitro targeting of unmodified tumor cells aftervaccination with Her-2/neu peptide 

loaded dendritic cells 

F3 44 rats were vaccinated intradermally twice, 14 days apart with peptide loaded dendritic cells (5 x 104 

cells/site,4sites). Peptidesincluded thepl 171-1185 parent, thechimericconstruct,theN-terminalCLIP 

variant and the MHC class I binding peptide (p544-562) from Her-2/neu: Peptides were loaded singly 

or in various combinations. Subsequent (14 days) to the last vaccination, splenic T lymphocytes were 

harvested and evaluated for their ability to kill unmodified CRL 1666 tumor cells. 
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Figure 7  Vaccination with Her-2/neu peptide loaded dendritic cells induces protective antitumor 

immunity 

F3 44 rats were vaccinated intradermally (2X, 14 days apart) with dendritic cells (5 x 104 cells/site, 4 sites) 

that were loaded singly or in various combinations with the MHC class I (p554-562) and class II (p 1175- 

1185) Her-2/neu peptides, the chimeric construct or theN-terminal CLIP variant. Fourteen days later, the 

animals were challenged with live tumor (3 x 103CRL 1666 cells) administered intraperitoneally. 
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Figure 8     Effective antitumor immunity requires both CD4+ and CD8+ T cells 

Animals were vaccinated (2X) intradermally with dendritic cells (5 xl 04 cells/site, 4 sites) loaded with the 

MHC class I (p554-562) and the chimeric (pi 171-1185) construct. Fourteen days after the last 

vaccination, the splenic T lymphocytes were harvested and the CD8+ and CD4+ subsets isolated by 

immunomagnetic bead separation. The cells were adoptively transferred into secondary F3 44 recipients 

(unfractionated, isolated CD4+ and CD8+ subsets: 30 x 106 cells per recipient; recombined subsets, 15 

X106ofeach per recipient). Following (1 day) the adoptive transfer, the animals were challenged with 

3 X 105 viable CRL1666 tumor cells. 
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Figure 9 A, B     Inhibition of FL-CLIP binding by parent and chimeric Her-2/neu peptides 

PHAblast cells were incubated for 2 hours at 4°C with fluoresceinated CLIP (A, 0.3 microMolar: B, 3.0 

microMolar) in the presence of graded quantities of the parent p 1171 -118 5 peptide, the chimeric construct 

or theN-terminal variant of CLIP. The cells were washed prior to flow cytometric analysis on an EPICS 

IV Coulter flow cytometer evaluating the percent of cells staining with the fluoresceinated CLIP in the 

presence of the different peptides. 
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Table 1 

Peptide Sequences 

Peptide Sequence 

MHC class II - Parent Her-2/neu (p 1171 -1185) TLERPKTLSPGKNGV 

Chimeric Her-2/neu KPVSPMTLERPKTLSPGKNGV 

N-Tenninal CLIP Variant (p86-100) KPVSPMRMATPLLMRS 

MHC class I - Her-2/neu (p554-562) KGLPREYVS 
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